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SUMMARY

The aim of this paper is to develop a methodology for solving the incompressible Navier–Stokes
equations in the presence of one or several open boundaries. A new set of open boundary conditions is
first proposed. This has been developed in the context of the velocity–vorticity formulation, but it is also
emphasized how it can be formally extended to the equations in primitive variables. The case of a domain
involving several independent open boundaries is considered next. An influence matrix technique is
applied such that the inlet mass flux is split onto the several outlets in order to enforce the prescribed
mean pressure at each outlet. Both approaches are validated by numerical test cases. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many practical problems in fluid dynamics are studied (or conceptualized) in unbounded
domains. Obviously, these domains have to be truncated in order that the flow field can be
computed on finite computational domains. As a consequence, boundary conditions (BCs)
associated with these so-called ‘open’ boundaries are to be defined. The ability of these latter
conditions to correctly represent the real unbounded domain is crucial for the accuracy of the
computed flow field, especially when those boundaries are located in the vicinity of the regions
where the phenomena of interest occur. Furthermore, particularly in the context of an
incompressible fluid, these conditions may greatly influence the flow inside the computational
domain, since any error on the flow field (say at the boundary) is instantaneously felt in the
whole domain.

Defining such open boundary conditions (OBCs) is a difficult task. Indeed, they partly
depend on the flow outside the computational domain, which is logically unknown. Thus, one
has to introduce artificial BCs that may contain some additional information to be defined.
Whatever these conditions are, the numerical problem to be solved must be mathematically
well posed. Usual BCs for the Navier–Stokes equations consist of Dirichlet BCs for both
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velocity components normal and tangent to the boundary. In the context of an incompressible
flow for which a pressure equation can be derived by combining momentum equation and the
divergence-free condition, the definition of the normal velocity component yields a Neumann
BC for the resulting Poisson problem. However, when dealing with open boundaries on which
the velocity components are unknown, one usually has to resort to other BCs.

The homogeneous Neumann BC is commonly used as a passive condition at the open
boundaries. However, since we are concerned with the normal momentum equation at the
boundary, this condition applied to the normal velocity component yields an ill-posed problem
[2]. Moreover (or consequently?), this homogeneous Neumann BC has been known to give
poor results for high Reynolds numbers [3,4], and therefore the boundaries have to be located
far away from the area of interest, increasing the computing time of the numerical model.
Some authors also derive OBCs based on the stress tensor (see the discussion by Gresho [5]).
In this case, the problem is mathematically well posed, but this tensor is once again unknown
and a zero stress condition is usually assumed [2]. Furthermore, the methodology by Bruneau
and Fabrie [6], for which the stress tensor is derived from a reference flow, is also of interest.
This kind of OBC naturally yields Dirichlet BCs for the pressure, and usually results in good
behaviour. However, the strong coupling between the pressure and the velocity due to
incompressibility is also a source of difficulty at the boundaries. For an exhaustive overview of
the different OBCs, the reader is referred to the review papers by Sani and Gresho [2] and
Gresho [5].

In contrast, the velocity–vorticity formulation of the Navier–Stokes equations has gained
some favour thanks to its ability to decouple the dynamic feature (momentum conservation
equation) from the kinematics (see further). Indeed, by taking the curl of the momentum
equation, the pressure no longer appears in the subsequent vorticity transport equation.
Consequently, in the case of flows with open boundaries, the BCs for the vorticity are easier
to implement than those for the velocity. Nevertheless, BCs for the velocity are still required
when solving the kinematic equations.

This paper first attempts to clarify the definition of such OBCs in the context of the
velocity–vorticity formulation. A new set of BCs resulting in a well-posed problem is defined.
This will be proven to remain efficient, even for short domains. Moreover, it will be shown
that the foreseen advantages involved with this formulation can be extended to the equations
in primitive variables, as long as both formulations are readily equivalent. The key points of
our approach are (1) to benefit from the easy implementation of the BCs for the vorticity
transport equation and (2) to use the natural Dirichlet BCs for the normal velocity component
in the course of the kinematic problem, such that it is well posed. This normal component will
be derived from an advection–diffusion equation for an additional unknown. Such a method-
ology was proposed by the author at the 10th International Conference on Numerical Methods
for Laminar and Turbulent Flows that held in Swansea [1]. The results that had then been
obtained are greatly improved herein. Subsequently, it is proven that this methodology is an
attractive alternative to the usual OBCs.

The treatment of multiple open boundaries is also a major difficulty. Indeed, one has to
determine how the inlet mass flux is split onto these several open boundaries. Actually, the
outlet fluxes depend on the flow outside the computational domain (which is unknown, as
mentioned earlier). By using a weak formulation of the Navier–Stokes equations, Heywood et
al. [7] show that a natural way to handle this case is to enforce the mean pressure at each
boundary. In a similar manner, a technique that consists of defining the net mass flux across
each outlet boundary such that the prescribed mean pressures are enforced is introduced. It is
based on the previous mentioned methodology for defining the OBCs.
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The paper is organized as follows. The Navier–Stokes equations are first recalled, and
the velocity–vorticity formulation is introduced. The implementation of the BCs such that
both formulations are readily equivalent is emphasized. BCs for a single open boundary are
defined in Section 4 and numerically tested. Finally, the case of multiple open boundaries is
considered. Comments on the extension of both methodologies to the equations in primitive
variables are given in Section 7.

2. GOVERNING EQUATIONS

Let us consider the flow of an incompressible viscous fluid in a domain V bounded by G.
It is assumed that there exists N surface pieces {Gi}i=1, . . . , N lying on G at the intersection
of V and the flow field region outside V. The velocity (and all flow-related quantities) on
these surfaces Gi is naturally part of the unknowns. The Gi will be hereafter denoted by
open boundaries as opposed to the other boundary parts, such as inlets or walls, on which
the velocity flow field is assumed to be known.

The non-dimensional Navier–Stokes equations in primitive variables are, in rotational
form,

(7

(t
+w×7= −9pt−

1
Re

9×w in V, (1)

9 ·7=0 in V, (2)

where 7 is the velocity and the vorticity w is defined as the curl of the velocity, Re is the
Reynolds number and the dynamic pressure pt is related to the static pressure p through
the following relation:

pt=p+
1
2
72.

On the boundaries, both normal and tangential components of the velocity are usually
prescribed

7 ·n=b ·n on G, (3)

7×n=b×n on G, (4)

where n denotes the unit outer vector normal to the boundary G. The prescribed boundary
velocity b has to satisfy the following compatibility constraint:&&

G
b ·n dG=0, (5)

in accordance with the divergence-free condition (2). Together with the definition of an
initial solenoidal velocity field, Equations (1)–(5) are well posed (see Gresho [5]). But, as
mentioned earlier, the boundary velocity field b is usually unknown on the boundary parts
{Gi}i=1, . . . , N. The aim of this paper is to define some appropriate numerical procedure for
computing those values, both in the case of a single open boundary (N=1) and multiple
open boundaries (N]2).
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For the sake of simplicity, the following right-handed orthonormal vector basis (t1, t2, n), for
which t1 and t2 are tangent to the boundary, is introduced on G. The projection of any vector
field a onto the plane tangent to the boundary thus reads as

a×n=at 1
t1+at 2

t2.

3. VELOCITY–VORTICITY FORMULATION

The velocity–vorticity (hereafter denoted by 7–w) formulation of the Navier–Stokes equations
has been seen by several authors as an attractive alternative to the equations in primitive
variables. Particularly, it seems that the implementation of BCs on open boundaries is more
straightforward [8–10]. It will be shown below that this is not obvious, since both formulations
are equivalent.

In this section, the equivalence of the formulations is addressed and the 7–w formulation is
shown to be a particular fractional step method, as stated by Lardat et al. [11]. The treatment
of the BCs is emphasized.

3.1. Set of 7–w equations

By taking the curl of Equation (1), it can be proven (see Daube et al. [12]) that the primitive
form of the Navier–Stokes equations (1)–(4) is equivalent to the so-called 7–w formulation

(w
(t

+9× (w×7)=
1

Re
9× (9×w) in V, (6)

9×7=w in V, (7)

9 ·7=0 in V, (8)

7 ·n=b ·n on G, (9)

7×n=b×n on G, (10)

which is always subject to the compatibility constraint (5). If the domain V is p multiply
connected, p additional conditions ensuring that the pressure is uniform in the domain arise
[12]. Without loss of generality, the domain is hereafter assumed to be simply connected.

The solution procedure for this new set of equations always reduces to a two-step problem:

1. Solve the convection–diffusion equation (6) for the vorticity w with appropriate BCs that
will be discussed below.

2. Solve the so-called div–curl problem (7)–(9), which consists of finding the divergence-free
velocity field 7 whose curl is the vorticity w and for which the normal component on the
boundary is known.

Notice that there is no explicit BC on the vorticity when solving Equation (6), except its
definition as the curl of the velocity (Equation (7)). However, the velocity depends on the
vorticity itself through the div–curl problem. Actually, there exists an integral condition (see
Dennis and Quartapelle [13]) so that the tangential components of the vorticity along the
boundary must be estimated in the first step of the solution procedure such that Equation (10)
is satisfied at the end of the second step. This coupling may be achieved either by means of an
influence matrix technique [14], or in a decoupled manner by approximating the boundary
vorticity in the first step [15].

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1061–1085 (1999)
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3.2. Link with a fractional step method

By introducing a Helmholtz-type decomposition of the velocity flow field for solving the
div–curl problem [16], it has been shown by Lardat et al. [11] that such a method is readily
equivalent to a fractional step method for solving the Navier–Stokes equations in primitive
variables. The procedure is briefly described below.

Let us assume that Equation (6) has been discretized with respect to time by making use of
any temporal scheme. In this case, the time derivative is approximated by a second-order
backward temporal scheme. Viscous terms are treated implicitly, whereas convective terms are
evaluated using a second-order accurate-in-time Adams–Bashforth extrapolation. The vortic-
ity transport equation is thus

3wn+1−4wn+wn−1

2 Dt
+9× (w×7)*=

1
Re

9×9×wn+1, (11)

where n+1, n and n−1 denote the successive time levels, Dt is the time step and the asterisk
denotes the Adams–Bashforth extrapolation. Thanks to the rotational form of the convective
and viscous terms, the solution method only requires the tangential vorticity components as
BCs. These components are stated as described in Subsection 3.1.

After solving the previous equation, all its terms are known. Then let the ‘predicted’ velocity
vector field 7̃ be explicitly defined such that

37̃−47n+7n−1

2 Dt
+ (w×7)*= −

1
Re

9×wn+1. (12)

Notice that the component of 7̃ normal to the boundary is defined by projecting Equation (12)
onto the normal n. Hence, the tangential components of 7̃ satisfy Neumann BCs by definition
of the vorticity components tangent to the boundary

(6̃t 1

(n
= +wt 2

+
(7̃ ·n
(t1

on G, (13)

(6̃t 2

(n
= −wt 1

+
(7̃ ·n
(t2

on G. (14)

The predicted velocity field is now projected onto the space of divergence-free vector field by
adding the gradient of some scalar function f, such that

3
2 Dt

(7n+1− 7̃)= −9f. (15)

The scalar function equation originates from the divergence-free condition (8) supplemented by
BCs derived from (9). Indeed, taking the divergence of the previous equation yields the
following Poisson problem:

92f=
3

2 Dt
9 · 7̃ in V, (16)

9f ·n=
3

2 Dt
(7̃ ·n−b ·n) on G, (17)

for which the solution exists and is unique provided that Equation (5) is satisfied. Incorporat-
ing Equation (15) into Equation (12) yields Equation (1), and f corresponds to the dynamic
pressure pt itself. This solution procedure can be extended for solving the three-dimensional
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Navier–Stokes equations on non-orthogonal curvilinear MAC grids as described previously by
the author [16,17].

It is emphasized that it would be readily equivalent to solve the equation in primitive
variables by means of the fractional step method, which consists of: first solve Equations
(12)–(14) to obtain the predicted velocity 7̃ (predictor step); then solve the Poisson problem
(16) and (17) for the dynamic pressure pt (corrector step).

3.3. Comments on the boundary conditions

It must be pointed out that the proposed method mainly differs from the usual fractional
step methods insofar as here it implicitly makes use of Neumann BCs, (13) and (14), for the
tangential components of the velocity. The normal velocity component 7̃ ·n has been given by
projecting (12) onto the normal n. The equivalence between the 7–w formulation and the
fractional step method is thus ensured only for those particular BCs. In contrast, fractional
step methods usually make use of Dirichlet BCs for the tangential components of the predicted
velocity

7̃×n=b×n on G.

To sum up, whether the 7–w formulation or the equivalent fractional step method is used, the
solution algorithm consists of the two steps:

1. A ‘dynamic’ problem for the vorticity w or the predicted velocity 7̃ respectively requires
Dirichlet BCs for the vorticity components tangent to the boundary, or equivalently,
Neumann BCs for 7̃×n.

2. A ‘kinematic’ problem in form of a Poisson equation requires the value of the velocity
component normal to the boundary b ·n.

On a wall, the tangential vorticity component adjusts itself (see above) in order to satisfy the
BC (10). In a similar manner, on an inlet, the vorticity distribution can be calculated in order
to enforce any prescribed tangential velocity, or it can be assigned to any desired value (zero
for instance). On both inlets and walls, the normal velocity component is assumed to be
known. More precisely, it is given by the inlet mass flux on the inlets, and it is zero on walls.
On the open boundaries, neither the tangential vorticity components nor the normal velocity
component are known. The difficulty lies in the definition of those quantities. In the following,
we focus on the 7–w formulation. The fractional step method will be discussed at the end of
this paper.

4. SINGLE OPEN BOUNDARY

In this section, it is first assumed that there exists only one open boundary part G1 on which
the flow is unknown (i.e. N=1, see Section 2). Determination of the OBCs for the dynamic
and for the kinematic problems is described. This procedure was originally reported by the
author [1]. First, the vorticity transport equation is used for deriving BCs for the vorticity.
Then the Dirichlet BC for the normal velocity component required for solving the kinematic
problem is derived such that the compatibility constraint is ensured. This normal component
is computed by solving an additional advection–diffusion equation for its own derivative along
the boundary. The present procedure is improved compared with the one presented at Swansea
[1].
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4.1. Dynamic open boundary condition

As mentioned before, the solution of the dynamic problem requires the values of the
vorticity components tangent to the boundary. If the open boundary is far away from walls,
viscous effects may be neglected and an extrapolation of the values through a particle method
may be used (see Ta Phuoc and Bouard [8]). This, in the two-dimensional case, is

D(w×n)
Dt

=0,

and means that the actual vorticity on the boundary is assigned by using its value at the
location of the actual fluid particle at the previous time level. This approach was used by the
author in the previous mentioned work [1] and will be denoted hereafter as the ‘particle
method’. Notice that in the three-dimensional case, the stretching term of the vorticity
transport equation should be added.

In the vicinity of walls, it is well known that the particle method is a poor approximation.
The convection–diffusion equation (6) projected onto the plane tangent to the open boundary
surface may alternatively be solved in order to compute the tangential components of the
vorticity [9]. This approach will be preferred and used in this paper. The spatial discretization
of this equation introduces quantities outside the computational domain, both through the
diffusive and the convective terms. The former difficulty is solved by neglecting the diffusion
normal to the boundary. This is equivalent to the following homogeneous Neumann BC:

(

(n
[(9×w)×n ]=0.

Concerning the convective term, a first-order accurate upwind scheme is used, avoiding the
value of the vorticity outside the computational domain. In the end, the actual equation is very
similar to the so-called ‘advective derivative condition’, which is often used to derive unknown
values on the open boundaries [2]. It is here applied to compute the vorticity.

4.2. Kinematic open boundary condition

In the second solution step, the velocity component normal to the boundary has to be
defined. Owing to the fact that the compatibility constraint (5) must be ensured, the
assignment of this value is crucial. Notice that the normal velocity component is the integral
of its own derivative along the boundary which is just the vorticity by adding the normal
derivative of a tangential velocity component (Equations (13) and (14)). If these last quantities
are known, the normal component can thus be recovered by using a simple spatial integration.

4.2.1. Two-dimensional case. For the sake of simplicity, let us first consider the two-
dimensional flow in the Cartesian plane (x, y) such that the open boundary G1 is a line
x=constant. Let u and 6 denote the x and y components of the velocity respectively. Also, the
vorticity reduces to a scalar field hereafter denoted by w. The mass flux across an elementary
surface dG of the open boundary is a function of y

7 ·n dG=u(y) dG,

where dG=dy in this case. Assume that the value of (u/(y is known on the open boundary
(the computation of this quantity will be addressed later in Section 4.3). Integration along the
boundary then yields

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1061–1085 (1999)
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u(y)=
& y

0

(u
(y

(ỹ) dỹ+u(0), (18)

where y=0 denotes any point on the open boundary G1. Let this point be one of the ends of
the boundary, and let y=L denote the other end. The mass flux across G1 is& L

0

7 ·n dG=
& L

0

�& y

0

(u
(y

(ỹ) dỹ+u(0)
�

dy,

and it has to match the inlet mass flux Din, which is assumed known. After some simple
algebra, we get

u(0)=
�

Din−
& L

0

�& y

0

(u
(y

(ỹ) dỹ
�

dy
�
/
& L

0

dy.

The normal velocity component on G1 can now be recovered thanks to Equation (18).
This methodology of calculating the velocity component normal to the boundary presents

some advantages. First, the easily computed single constant u(0) adjusts itself in order to
ensure the compatibility constraint (5). Moreover, this constraint is satisfied identically;
remember that it is a necessary condition for the div–curl (or the Poisson) problem to have a
solution. Finally, the choice of the location y=0 is arbitrary since the normal velocity
component is uniquely defined by its derivative and the value of its integral along the
boundary.

In the paper by Sani and Gresho [2], a similar technique also yields the computation of a
single constant, which allows the compatibility constraint to be satisfied. In addition, the
homogeneous Neumann BC

(7

(x
=0

is used based on the assumption of fully developed flow, an assumption that is not always
justified.

4.2.2. Three-dimensional case. The above-described procedure is now extended to the general
three-dimensional case. Let x1 denote the spatial variable on the open boundary G1, and x1,0

any particular point on this surface. In the same way as in the two-dimensional case, the
normal velocity component can be obtained by integrating its own derivative, i.e.

b ·n(x1)=
&

g(x 1)

�(7 ·n
(g

(x1)
n

dg+b ·n(x1,0),

where g(x1) denotes any path lying on the surface G1 and joining x1,0 to x1, and dg denotes an
elementary curve length along this path. The following notation is introduced:

B1(x1)
&

g(x 1)

�(7 ·n
(g

(x1)
n

dg.

The definition of the normal velocity component on G1 proceeds as in the previous section.
Namely, the constant b ·n(x1,0) is computed by making use of the inlet mass flux, then the
normal velocity component is recovered by integrating the former equation.

It is noteworthy that the boundary scalar field b ·n(x1) should be independent on the path
g(x1) chosen for integration. Based on this, the integrated quantity would have to satisfy the
following compatibility constraint:
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gc

�(7 ·n
(g

(x1)
n

dg=0,

for any loop gc lying on G1. However, this last condition has not been ensured in the
three-dimensional calculations presented later.

4.3. Deri6ati6e of the 6elocity component on the open boundary

As stated in the two previous subsections, the values of the tangential derivatives of the
normal velocity component on the open boundary have to be estimated. At this point of the
numerical procedure, the tangential components of the vorticity on the boundary have already
been computed. The searched quantities are then directly related to the normal derivatives of
the tangential velocity components through Equations (13) and (14). Owing to the fact that far
away from the region of interest, the flow is roughly constant, homogeneous Neumann BC for
the unknowns may be assumed [8]

(6t 1

(n
=0,

(6t 2

(n
=0. (19)

However, it has been shown [1] that this kind of BC yields unrealistic numerical behaviour
when vortex structures are going across the open boundary if the mesh is not adapted (say if
the mesh is too short). An improved condition has, therefore, been proposed. Instead of
arbitrarily assigning this value to zero, the author suggested that it can be carried out with the
fluid particles [1], as done for the vorticity

D
Dt

�(6t 1

(n
�

=0,
D
Dt

�(6t 2

(n
�

=0. (20)

These last equations can actually be derived from the momentum equation. In addition to
viscous effects, the pressure gradient has been neglected since the projection of the Euler
equation onto the direction tangential to the boundary reads

D(7×n)
Dt

= − (9p)×n.

Equations (20) then omit the cross-derivative of the pressure. Nevertheless, these BCs present
better results than the homogeneous Neumann BCs [1].

In the current paper, it is proposed to derive a convection–diffusion equation for the
searched quantities in the same spirit as in the paper by Jin and Braza [18]. In their work, a
non-reflecting OBC for the velocity vector field was derived from a wave equation (see the
work by Engquist and Majda [19]). In the current case, the same technique is applied to the
tangential derivatives of the normal velocity. Thereby, the following equations can be
obtained:

(

(t
�(7 ·n
(tj

�
+ (7 ·n)

(

(n
�(7 ·n
(tj

�
= +

1
Re

� (2

(t1
2+
(2

(t2
2

��(7 ·n
(tj

�
on G1, (21)

for j=1, 2. In the two-dimensional case and with the notations introduced above, this
equation reduces to

(

(t
�(u
(y
�

+u
(

(x
�(u
(y
�

= +
1

Re
(2

(y2

�(u
(y
�

on G1. (22)
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The discretization scheme used for the unsteady term is the same as the one used for the
vorticity transport equation (see Section 3.2). The viscous term is treated implicitly by making
use of a classical central difference scheme second-order accurate in space. Concerning the
convective term, an additional difficulty arises owing to the fact that any equation for the
unknown quantities is solved inside the computational domain. Therefore, the convective term
is discretized with respect to an explicit-in-time Beam–Warming upwind scheme.

4.4. Numerical results

In order to test the current OBCs, the two-dimensional flow over a circular cylinder has
been computed in several configurations. Six different computational grids denoted by
M1–M6 are used. The open boundaries are respectively located at 19.9, 14.6, 12.0, 6.7, 5.4 and
4.0 cylinder diameters downstream from the centre of the cylinder.

The first test case is the impulsively started cylinder with a steady state Reynolds number
based on the cylinder diameter and the velocity at infinity equal to Re=40. The growth of the
separation bubble is compared with the experimental results by Coutanceau and Bouard [20]
and the numerical ones by Collins and Dennis [21]. The results obtained with the present
method are presented for the computation on the longest mesh M1 and on the three shortest
meshes M4, M5 and M6 in Figure 1. A good agreement between these computed results and
those from the literature is observed, except for the shortest mesh M6, which is obviously too
short to capture the phenomenon correctly.

The two next test cases concern the unsteady flow around the cylinder for a Reynolds
number set equal to Re=200 and Re=1000 respectively. During the first time of the
computation (tB5), several abrupt circular motions of the cylinder are enforced in order to
destabilize the flow, rapidly yielding a von Karmann vortex street downstream the cylinder.

Figure 1. Development of the separation bubble behind the cylinder, Re=40.
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Table I. Comparison of results for unsteady flow over a cylinder, Re=200

Drag coefficient Strouhal numberReference

1.373 0.1988Present, mesh M1
Present, mesh M2 1.375 0.1989

1.374Present, mesh M3 0.1989
1.380Present, mesh M4 0.1995

Liu et al. [22] 1.31 0.192
1.19 0.193Belov et al. a

1.23Rogers et al. b 0.185
Miyake et al. a 1.34 0.196
Rosenfeld et al. b 1.46 0.211

1.58Lecointe et al. a 0.194
Lin et al. a 1.17

0.197Henderson et al. a

Kovaznay (exp.) b 0.19
Roshko (exp.) b 0.19

0.197Williamson (exp.) a

1.3Wille (exp.) b

a These results are collected in papers by Belov et al., which are in turn cited in Reference
[22].
b These results are collected in papers by Rogers et al., which are in turn cited in
Reference [22].

The results obtained for the case Re=200 are first compared with data from the literature.
The computed Strouhal number and mean drag coefficient are presented in Table I, also
showing the results of Liu et al. [22] and those by Belov et al. and Rogers et al. that are cited
in Reference [22]. The results obtained with the present method are very close to each other

Figure 2. Time series of the drag coefficient, Re=200.
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Figure 3. Time series of the lift coefficient, Re=200.

and match with the other results available in the literature. As expected, the results deteriorate
when the mesh is getting shorter. Namely, the drag coefficient and the Strouhal number are
increasingly perceptible for the mesh M4.

The time series of the drag and lift coefficients are reported in Figures 2 and 3 respectively
for Re=200, and in Figures 4 and 5 for Re=1000, for a dimensionless time 30B tB40 for
which a periodic state has been reached. It can be seen that the lift coefficient is almost
non-sensitive to the mesh extension. The drag coefficient is a bit more sensitive and discrepan-
cies in the results arise for the shortest mesh considered, mesh M4. However, good agreement
is found between the three other meshes. The results obtained with the particle method [1] on
mesh M3 are also reported in these figures. The present approach yields better results both for
the drag and lift coefficients, even for the shortest mesh, mesh M4, so far as the particle
method does not allow for a fully periodic state to be reached.

The isovalues of the computed vorticity and dynamic pressure at the dimensionless time
t=40 are finally presented for the case of Re=1000 with the present method. Since the open
boundary of mesh M2 is far away from the cylinder, the flow field in the place of the open
boundaries of the shorter meshes should be independent of the OBCs. It is consequently a
good approximation of the real unbounded flow at these places. Indeed, the isovalues of the
vorticity on meshes M3 and M4 exhibit little discrepancies with mesh M2 (see Figure 6). The
pressure is a very sensitive quantity, which is scarcely reported by the authors when testing
OBCs. In the current case, a relatively good agreement is found between the different meshes
(Figure 7). However, a slight suction phenomenon of the vortex structures in the vicinity of the
open boundaries of the shortest meshes can be observed when the isovalues are compared with
those on the longer mesh.
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5. SEVERAL OPEN BOUNDARIES

The case for which the number of the open boundary parts is larger than one (i.e. N]2, see
Section 2) is now considered. The procedure for defining the BCs described in the previous
section can be applied on each boundary part Gi. In addition to the evaluation of the
tangential components of the vorticity and the tangential derivatives of the normal velocity
component, N scalar unknowns arise with the definition of the mass fluxes across each open
boundary (see Section 4.2). However, the compatibility constraint yields a single equation. The
goal of this section is to determine how the inlet mass flux is split onto the several open
boundaries.

5.1. Defining the additional conditions

Hereafter, xi denotes the spatial variable on the open boundary part Gi (i=1, . . . , N) and
Bi(xi) denotes the integral as defined in Section 4.2.2 for any path g(xi) lying on Gi. The N
scalar unknowns arising with the mass fluxes across each boundary part Gi are b ·n(xi,0), where
xi,0 denotes any location on Gi.

As previously described, the computation of the BCs on each open boundary Gi reduces to:

� compute the tangential components of the vorticity w×n and the tangential derivatives of
the normal velocity component (7 · n/(tj ( j=1, 2);

� determine the normal component of the velocity b ·n ( j=1, 2).

The solution of the first step has already been discussed in the previous section. Concerning the
second step, it has also been described how the normal velocity component can be computed
on each open boundary Gi (see Section 4.2.2) as

Figure 4. Time series of the drag coefficient, Re=1000.
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Figure 5. Time series of the lift coefficient, Re=1000.

b ·n(xi)=Bi(xi)+b ·n(xi,0),

provided that the unknown scalar constants b ·n(xi,0) have been defined. Recall that the
boundary scalar field b ·n must satisfy the compatibility constraint (5). Incorporating the
normal velocity component as defined above yields

%
N

i=1

&&
Gi

(Bi(xi)+b ·n(xi,0)) dG=Din,

where the inlet mass flux Din is assumed to be known. Rearranging this equation yields the
following linear combination:

%
N

i=1

ai b ·n(xi,0)=c,

where the coefficient ai denotes the area of the corresponding boundary surfaces Gi, and c is
some constant depending on the inlet mass flux and the tangential derivatives of the normal
velocity component on the boundaries Gi. For the sake of simplicity (see below), this equation
is rewritten in the following form:

b ·n(xN,0)=F(b ·n(x1,0), . . . , b ·n(xN−1,0))+C, (23)

where the function F expresses a linear combination of the N−1 scalar values {b ·n(xi,0)}i=

1, . . . , N−1, and C=c/aN.
As a matter of fact, the definition of the BCs reduces to the determination of the N scalar

unknowns b ·n(xi,0). Each of these specifies the mass flux across the corresponding open
boundary part Gi. In some particular cases, it may be relevant to enforce these mass fluxes, but
from a physical point of view, it is generally more natural to enforce the mean value of the
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pressure at each outlet. Indeed, in many practical situations, the unknown outflow mass rate
across each boundary is depending on the pressure which may be enforced. As outlined by
Heywood et al. [7], the N conditions for the mass fluxes can then be replaced by

1
ai

&&
Gi

pt dGLipt=Pi, i=1, . . . , N,

Figure 6. Isovalues of the vorticity, Dw=0.5, Re=1000: (a) mesh M2, (b) mesh M3, (c) mesh M4.
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Figure 7. Isovalues of the dynamic pressure, Dpt=0.2, Re=1000: (a) mesh M2, (b) mesh M3, (c) mesh M4.

where Li denotes the scalar averaging operator on Gi, and Pi is some prescribed value of the
averaged pressure on the surface Gi. It must be emphasized that the pressure is defined up to
an arbitrary constant. Consequently, only the difference of the pressure between two open
boundaries is significant. The N−1 following conditions finally remain:

Lipt−Li+1pt=DPi=Pi−Pi+1, i=1, . . . , N−1. (24)
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The compatibility constraint under the form of Equation (23) yields the last equation such that
the number of conditions to be enforced equals the number of the unknowns {b ·n(xi,0)}i=

1, . . . , N. Notice that the prescribed pressure differences DPi can be time-dependent. It must
also be noted that the dynamic pressure, instead of the static one, has here been used due to
the rotational form of the Navier–Stokes equations in (1).

5.2. Enforcing the pressure differences

We now describe how the pressure differences can be enforced. The boundary pressure is a
function of the velocity component normal to the boundary. Since the definition of this normal
component is only required when solving the second step of the Navier–Stokes procedure (i.e.
the div–curl problem, see Section 3), the pressure differences have to be enforced only when
solving the kinematic problem. As a consequence, the following corrector step must be solved:

[A ] Í
Ã

Ã

Ã

Ã

Á

Ä

9 ·7=0
9×7=w
7 ·n=b ·n
b ·n(x i)=Bi(xi)+b ·n(xi,0)
b ·n(x i,0) given such that Lipt−Li+1pt=DPi

b ·n(xN,0)=F(b ·n(x1,0), . . . , b ·n(xN−1,0))+C,

in V,
in V,
on G,
on Gi, i=1, . . . , N,
i=1, . . . , N−1,

where the vorticity vector field w, the constant C, and the {Bi(xi)}i=1, . . . , N have previously
been calculated when solving the dynamic problem (predictor step). It is obvious that the
problem [A] is well posed since the compatibility constraint is ensured thanks to the last
equation. Introducing the Helmholtz decomposition (15) yields the following Poisson problem
for the dynamic pressure field (i.e. f, see Section 3):

7= 7̃−
2 Dt

3
9f in V,

92f=
3

2 Dt
9 · 7̃ in V,

[P ] Í
Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

9f · n=
3

2 Dt
(7 · n−b · n) on G,

b · n(xi)=Bi(xi)+b · n(xi,0) on Gi, i=1, . . . , N,

b · n(xi,0) given such that Lipt−Li+1pt=DPi i=1, . . . , N−1,

b · n(xN,0)=F(b · n(x1,0), . . . , b · n(xN−1,0))+C,

where the predicted vector field 7̃ is explicitly given by Equation (12). The only remaining
difficulty is to define the correct mass flux on each open boundary in order to satisfy the
desired pressure differences.

Taking advantage of the linearity of the above problem with respect to the b ·n(xi,0), the
solution procedure makes use of an influence matrix technique. First, let {b ·n(xi,0)}i=1, . . . , N−1

be any arbitrary distribution of the N−1 corresponding scalar quantities b ·n(xi,0) and let us
solve the following problem:
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[P( ] Í
Ã

Ã

Ã

Ã

Á

Ä

92f( = 3
2 Dt

9 · 7̃

9f( ·n=
3

2 Dt
(7̃ ·n−b ·n)

b ·n(x i)=Bi(xi)+b ·n(xi,0)

b ·n(xN,0)=F(b ·n(x1,0), . . . ,b ·n(xN−1,0))+C,

in V,

on G,

on Gi, i=1, . . . , N

where b ·n=b ·n everywhere but on Gi. As mentioned above, this last problem clearly has a
unique solution since it corresponds to a Poisson problem with Neumann BC for which the
compatibility constraint is ensured. Owing to the superposition principle for linear problems,
the difference between the solution of the original problem [P ] and the solution of the above
problem [P( ] is sought as a linear combination of the N−1 following homogeneous problems:

[P. k] Í
Ã

Ã

Ã

Ã

Á

Ä

92f. k=0

9f. k ·n= −
3

2 Dt
�b ·nk

�b ·nk(xi)=
�b ·nk(xi,0)

�b ·nk(xN,0)=F(�b ·nk(x1,0), . . . , �b ·nk(xN−1,0)),
�b ·nk(xi,0)=d i

k

in V,

on G,

on Gi, i=1, . . . , N,

i=1, . . . , N−1,

for k=1 to N−1, where �b ·nk=0 everywhere but on Gi, and d i
k is the Kronecker symbol. The

solution (f, {b ·n(xi)}i=1, . . . , N) of the problem [P ] can thus be expressed as the following
linear combination:

f=f( + %
N−1

k=1

lkf. k,

b ·n(xi)=b ·n(xi)+ %
N−1

k=1

lk�b ·nk(xi), i=1, . . . , N,

for which the N−1 coefficients lk are defined such that the pressure differences (24) are
satisfied

Lif( −Li+1f( + %
N−1

k=1

lk(Lif. k−Li+1f. k)=DPi, i=1, . . . , N−1.

These last equations can be recast in matrix form as

M ·l=s,

where l= ({lk}k=1, . . . , N−1)T, the elements of the matrix M are

Mik=Lif. −Li+1f. k, i=1, . . . , N−1; k=1, . . . , N−1,

and the elements of the vector s are defined by

si=DPi−Lif( +Li+1f( , i=1, . . . , N−1.

It can be proven that the matrix M is invertible since the problems [P. k] have a unique solution.
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To sum up, the solution procedure is

� In a preliminary stage:
– Solve the N−1 homogeneous problems [P. k].
– Calculate the residuals Lif. k−Li+1f. k.
– Build the matrix M formed by those residuals, and invert.

� At each time level of the integration of the Navier–Stokes equations:
– Choose the {b ·n(xi,0)}i=1, . . . , N−1 arbitrarily.
– Solve [P( ] and calculate the residuals Lif( −Li+1f( , then s.
– Multiply by the inverse matrix M−1 to obtain the lk.
– Solve the final problem [P ] with the corrected scalar data

b ·n(xi,0)=b ·n(xi,0)+l i, i=1, . . . , N−1.

In this case, the influence matrix only depends on the geometry of the domain (see the
problems [P. k]). This matrix only needs to be calculated at the beginning of the computation,
assuming that the mesh remains the same throughout the computation. Moreover, the size of
this matrix is proportional to the number of open boundaries N. Hence, except in some special
cases, the size of this matrix is small and its inversion will be cheap.

However, the influence matrix technique is based on an exact solution of the operators
involved in the initial problem (i.e. the Poisson problem in this case). Numerical inaccuracies
in solving those equations may yield large errors in the computed results. When using iterative
methods for solving those equations, a great computational time may thus be required in order
to minimize these errors.

5.3. Numerical tests

In order to test our approach, the three-dimensional flow inside a branching channel is
computed. This channel contains one inlet, and two branches emerging onto two open

Figure 8. Partial view of the mesh in the branching channel.
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Figure 9. Isovalues of the dynamic pressure in the plane z=0.5, Dpt=0.25: (a) symmetrical case, equal outlet
pressures; (b) non-symmetrical case, adjusted outlet pressures; (c) non-symmetrical case, equal outlet pressures.
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Figure 10. Isovalues of the y component of the velocity in the plane z=0.5, D6y=0.2: (a) symmetrical case, equal
outlet pressures; (b) non-symmetrical case, adjusted outlet pressures; (c) non-symmetrical case, equal outlet pressures.
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Figure 11. Dynamic pressure along a vertical line in the cross-section plane x=2.75.

boundaries respectively. The computational domain depicted in Figure 8 is symmetrical about
the plane y=1.5, where y denotes the vertical direction. z denotes the horizontal direction
perpendicular to the main flow direction, and the x-direction is orientated from the inlet to the
outlets along the main flow direction. The Reynolds number of the flow based on the width
of the channel and the inlet velocity is equal to Re=200.

In the first computational case, the two branches of the channel have the same length and
equal (dynamic) pressures are enforced at both outlets. The flow field is thus expected to be
symmetrical with respect to the above-mentioned symmetry plane, as it can be seen from the
isocontours on the centre plane z=0.5 of the dynamic pressure (Figure 9(a)) and of the y
component of the velocity (Figure 10(a)) at the dimensionless time t=5.

In the second case, the upper branch is cut such that the computational domain is no longer
symmetrical. Zero pressure difference between the two outlets is also enforced. As could be
expected, the flow field becomes now non-symmetrical (see Figures 9(c) and 10(c)).

Finally, the averaged pressure difference between the cut-plane and the other non-truncated
outlet can be extracted in the course of the symmetrical computation. The ‘adjusted’ pressure
difference can then be enforced as a BC when solving the flow on the non-symmetrical
domain. It is expected that the flow becomes symmetrical again. Indeed, Figures 9(b) and 10(b)
exhibit a very good agreement with the results of the symmetrical computation on Figures 9(a)
and 10(a).

These results are corroborated by a profile plot for the dynamic pressure in the cross-section
plane x=2.75, which is located just upstream the cut-plane, along a vertical line in the
centre plane of the channel (Figure 11). Once again, the flow is found to be symmetrical
when the computation is symmetrical, or when the pressure difference is adjusted for the
non-symmetrical domain; whereas it is unsymmetrical if the averaged pressures are set equal at
both outlets and when the domain is not symmetrical.
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6. EXTENSION TO A FRACTIONAL STEP METHOD

As shown in Section 3.2, the methodology used for solving the 7–w formulation of the
Navier–Stokes equations is readily equivalent to a fractional step method. Therefore, the
methods that have been proposed above for solving both the OBCs and the case of several
open boundaries can be used in this context. However, some particular points have to be
emphasized.

First, it has been mentioned already that the two methods are equivalent provided that BCs
are strictly the same. Consequently, Neumann BCs should be enforced for the tangential
components of the velocity in the predictor step, arising from the Dirichlet BCs for the
tangential vorticity components.

Second, most of the authors dealing with the Navier–Stokes equations in primitive variables
make use of the following formulation:

(7

(t
+ (7 ·9)7= −9p+

1
Re

927.

Concerning the convective term, both the rotational form of Equation (1) and the latter form
are possible. However, in this last case we have to deal with the static pressure p. Thus, the
pressure differences in Section 5 will involve the static pressure instead of the dynamic one. Let
us now concentrate on the viscous term. The Laplace vector operator is equivalent to the
double curl operator by virtue of the divergence-free condition and of the following
relationship:

927=9(9 ·7)−9×9×7. (25)

Let us assume that this Laplace operator is used for solving the predictor step of the fractional
step method. Recall that the corrector step consists of adding a pressure gradient to the
predicted velocity 7̃ to obtain the final velocity 7n+1. The double curl operator allows for the
cancellation of this gradient. In other respects, the pressure is calculated such that the final
velocity is divergence-free, the first term on the right-hand-side of Equation (25) will thus
cancel. Consequently, the momentum equation for the final velocity will be preserved at the
end of the corrector step inside the computational domain. Nevertheless, when using the
Laplace operator, Dirichlet BCs for the velocity component normal to the boundary are
required, in addition with the Neumann BCs for the tangential components of the velocity
involved with the double curl operator. As a matter of fact, the predictor step will be
dependent on the normal component of the boundary velocity. The influence matrix technique
that has been introduced for solving the corrector step, the purpose of which is to define the
normal velocity component, is not adapted to handle this coupling between the momentum
equation and the incompressibility constraint. This is the reason why the rotational form of the
viscous term should be used when dealing with a fractional step method for solving the
Navier–Stokes equations in primitive variables in this context. Nevertheless, such a coupling
could be taken into account by incorporating the predictor step together with the corrector
step into the influence matrix technique.

7. CONCLUSION

In this contribution, two aspects of the solution of the incompressible Navier–Stokes equa-
tions were treated. First, OBCs for the equations have been stated. These allow us to
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accurately enforce the incompressibility constraint, and make use of a non-reflecting wave-like
equation for an additional quantity. Second, the case of multiple open boundaries has been
considered. An algorithm for splitting the inlet mass flux onto the several open boundaries by
enforcing the averaged pressure differences between these boundaries has been proposed. For
this purpose, an influence matrix technique is used. In order to facilitate the demonstrations,
the Navier–Stokes equations have been recasted in velocity–vorticity formulation. However,
both methodologies can formally be extended to a particular fractional step method, for which
BCs and forms of the viscous term are not commonly used by people who have dealt with such
methods. It has also been numerically proven that these methodologies are effective when
dealing with domains with one or several open boundaries.
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